Tag: nano

Carbon-Coated Silicon Material: an Ideal Anode Material for Lithium Batteries

Problems Facing Silicon Carbon Material System

Silicon possesses an ultra-high theoretical capacity for lithium insertion, about 10 times greater than carbon materials. It has many advantages, including a low price, abundant sources, and a platform that is similar to graphite. Silicon will, however, produce volume changes of >400% during the deintercalation process of lithium. This will lead to pulverization, loss of contact between the current collector, conductive agent and silicon, as well as rapid degradation of capacity. In addition, a solid electrolyte (SEI) membrane on the silicon surface limits the cycle life of the material.
The lithium ions diffuse into the silicon particle, reducing the lithium insertion capability of the active materials. Selecting nano-scale silicon particle can also reduce material powdering. This will improve capacity. Nanoparticles, however, are easily agglomerated, and they have little effect on the thickening SEI films. Currently, silicon anode technologies are focusing on two key problems: “volume growth” and “conductivity”, which occur during the charge-discharge process. As far as anodes are concerned, the carbon materials used in silicon anodes to form conductive and buffer layer are crucial.


The nanometerization process can enhance the performance of silicon material. To reduce the production costs of nanosilicon materials and to stabilize the SEI film on the silicon surface, many materials have excellent intrinsic conductivity. These materials are then compounded with silicon to achieve these goals. Carbon materials can be used to improve the conductivity on silicon-based anodes and also stabilize the SEI films.

But no silicon or carbon material alone can satisfy the demands of modern electronics for energy density and cycle lifetime. The fact that silicon is a member of the same chemical group as carbon, and has similar properties to both, makes it easy to recombine them. The composite silicon-carbon can be used to complement both the benefits and shortcomings of each material. It also allows for a material with gram and cycle capacities that are significantly increased.

This is done to increase ionic conductivity rather than electronic conductivity. As the particle size is reduced, the diffusion path of lithium ions is also shortened. This allows the lithium ion to quickly participate in electrochemical reactions, during charge and discharge. For the enhancement of electronic conductivity there are two methods. One involves coatings of conductive material and the second is doping. This is done by producing mixed valences states to increase the intrinsic conductivity.

Carbon-Coated Silicone Material

Scientists developed a plan for using carbon to wrap silicone as a negative electrolyte material in lithium batteries. They did this by synthesizing the electrochemical characteristics of carbon and silica. In experiments, scientists found that silicon coated with carbon can boost the material’s performance. Preparation methods for this material include hydrothermal method CVD, and coating carbon precursors to silicon particles. The array of nanowires were prepared by metal catalytically etching the silicon plate. They then coated the surface with carbon using carbon aerogel and Pyrolysis. The initial discharge capacity of this nanocomposite was 3,344mAh/g. After 40 cycles, the capacity was 1,326mAh/g. The material’s excellent electrochemical performance is due to its good electronic conductivity, contact between silicon and carbon materials and effective inhibition of volume expansion by the silicon materials.

The Development Prospects

Carbon-coated Silicon material combines high conductivity, stability and silicon’s advantages with high capacity. It is an ideal material for lithium batteries anodes.


(aka. Technology Co. Ltd. (aka. Our silicon powder is high-purity, with fine particles and low impurity. If you need lower, please Contact us.

Problems Facing Silicon Carbon Material System Silicon possesses an ultra-high theoretical capacity for lithium insertion, about 10 times greater than carbon materials. It has many […]

Continue reading

Properties and Applications of Nano Hafnium

Nano Hafnium is a powder. Hafnium can be described as a silver-gray alloy metal with metallic luster. Allotropic Hafnium has high-temperature variants. High neutron absorption crosses can make hafnium metal a good control material for reactors. A nanometer of hafnium-metal powder is obtained by gas phase condensation and evaporation. This material has excellent sphericity integrity. Nano Hafnium ; Applications 1. Hafnium can also be used to make nano hafnium. Hafnium Powder as a Fire Propeller. 2. For the manufacture of an X-ray tube cathode in the electrical sector, nano hafnium can be used. Hafnium-based alloys can serve as front guards to nozzles or glider reentry cars. HFTA alloys may also be used in the manufacture of tool steels and resistance materials. Hafnium may be used in the production of heat-resistant materials such as tantalum and molybdenum. HfC, due to its hardness and melting points, can also be used to make carbide additions. Hafnium may be used in many aeration system’s getters. 3. Hafnium extractor can be used for nano-hafnium. It removes oxygen and nitrogen from the system. Tungstenmolybdenummetals (aka. Tungstenmolybdenummetals is an advanced material. With over 12 years’ experience, Tungstenmolybdenummetals is an established global supplier of chemical materials. High purity, small particles size, and low impurity are the hallmarks of our Nano Hafnium particle. We can help you if the price is lower.
Inquiry us

Nano Hafnium is a powder. Hafnium can be described as a silver-gray alloy metal with metallic luster. Allotropic Hafnium has high-temperature variants. High neutron absorption […]

Continue reading