Tag: Boride Powder

Boride Powder and its application

What is Borides Powder? Boride Poudre The boron is combined with metals or non-metals. It is usually a mesenchymal material and does follow the valence laws. Except for zinc (Zn), cadmium (Cd), mercury (Hg), gallium (Ga), indium (In), thallium (Tl), germanium (Ge), tin (Sn), lead (Pb), bismuth (Bi).
Borides powder can be formed from other metals. These crystals are hard and have melting points. They are chemically inert and cannot be dissolvable by nitric hot acid. They can be combined directly with elements, or by reducing oxides and active metals. They can be used as superconducting and refractory materials.
Boron, a light metal, forms Borides Powder that are stable with transitional metals. The compounds with the highest melting points are those formed with elements in groups IVA and VA or VIA. The structural characteristics of the boric atom determine the crystallographic structure of boride. Borides Powder’s chemical stability gradually decreases as it moves from IVA towards VIA. Borides Powder is most stable in TiB2, ZrB2, or HfB2.
Boride Powder crystal structure
Between boron atoms, the lattice forms structural units that include single bonds and double bonds. Also, spatial frameworks such as networks are created. The more boron is present in the boride, the more complex the structure unit.
In general, the more complex boron’s atomic structure, the less likely boron is to be hydrolyzed. It also has a stronger resistance to oxidation and nitrogen.
The transition metal Borides Powder has a chemical bond that is electronic. This means the boron becomes a positively-charged ion.

Borides Powder: Preparation methods
Borides Powders are made by the main method of refractory metal Borides powder manufacturing.
1.The reaction formula between metal and boron at high temperature is
Me+B—-MeB
Reducing metal oxide and boric acid with carbon is
2MeO+B2O3+5C—2MeB+5CO
Aluminum (silicon, Magnesium) Thermal method. Aluminium or silicon or magnesium reduces the oxides to generate metals and boron.
MeO+B2O3+AI – (Si,Mg )—MeB+Al oxide
Reducing metal oxides by boron carburide and carbon
4MeO+B4C+3C—4MeB+4CO
Reduce refractory metal oxides by using boron
xMeO+2xB—xMeB+(BO)x
Borides Powder: Use and nature
Boride is known for its high conductivity. The oxidation resistance at high temperatures of boride metal is based upon group IVB. Boride has the highest oxidation resistance.
Borides Powder do not react with humid air and dilute hydrochloric acids, but they do dissolve in nitric. Borides Powders are a mixture of metals and plastics. They have high conductivity as well as a positive coefficient of temperature resistance. Borides Powder of Ti Zr Hf has better conductivity than the metals.
The boride’s creep resistance is excellent, which makes it a great material for gas turbines or rockets. It can also resist deformation and corrosion and resist heat shock. Borides Powder, carbides, nitrides, or other alloys based on these materials can be used as sample holders for high temperature material testing machines and instruments, bearings, structural parts for nuclear energy devices, and components for aviation equipment.

(aka. Technology Co. Ltd., a global chemical supplier and manufacturer with more than 12 years of experience in the production of super-high-quality chemicals & Nanomaterials. Borides Powder is produced by our company with high purity, fine particles and low impurity content. Please. Contact Us if necessary.

What is Borides Powder? Boride Poudre The boron is combined with metals or non-metals. It is usually a mesenchymal material and does follow the valence […]

Continue reading

The Applications of Zirconium Diboride Powder

Overview of Zirconium Diboride Pulver
Zirconium diboride (ZrB2) This is a type of high covalent ceramic material with hexagonal crystal structures. It is an ultrahigh-temperature ceramic (UHTC) that has a melting temperature of 3246degC. It is a very low density at 6.09 g/cm3 (though it may have a higher density due to hafnium inclusions) and has excellent high-temperature resistance, making it suitable for high-temperature aerospace uses such as rocket propulsion or hypersonic flight. It is an uncommon ceramic that exhibits high thermal conductivity and electrical conductivity.
Zirconium boride is a gray-colored crystal found in nature. Zirconium biboride is composed of three components: zirconium boreide, zirconium diboride and zirconium tribromide. Only zirconium tribromide is stable across a wide temperature range. The industrial production uses a lot of zirconium boride. Zirconium dioxide is a hexagonal or gray crystal, powder, or crystal with a melting temperature of 3040. Zirconium dioxide is highly resistant to high temperatures. It also has high strength at high and normal temperatures. High resistance to high temperatures, good shock resistance and low resistance to oxidation. With metallic luster. It has a metallic appearance. It has a slightly lower resistance than zirconium. After heating, the material can be stable at all temperatures. It can be sintered at lower temperatures, despite having a high melting point.
Zirconium Diboride ZrB2 Powder CAS 12045-64-6
What are the applications of Zirconium Diboride Powder
As science and technology advances rapidly, supersonic aircraft, such as long-range rockets, long-range missiles and spaceships, are becoming more efficient and safer. The aircraft friction with the atmosphere generates a lot of heat. First, improve the high-temperature resistance for aircraft materials including refractory materials, carbides and carbon-carbon material, as well as borides. Zirconium-diboride ceramics are used widely in many fields due to their high melting point and high hardness.
Zirconium Diboride is a strategic material that has high hardness and high thermal conductivity. It also has good oxidation resistance, corrosion resistance, and oxidation resistance. It is used mostly in thermal protection systems and high-temperature electrodes.
Zirconium Diboride can be used in aerospace as a high temperature resistant material. This material is particularly well-suited for the surface and construction of rolling bearing balls.
Zirconium boride is an ideal candidate material to make thin-film electronic components for sensors, actuators, and microsystems operating at high temperatures. This is due to its metal-like conductivity as well as melting temperature of 325°C.
Zirconium boride is used in special ceramics refractories industries, nuclear industry, aerospace and military industries. Zirconium boride can also be used to coat smooth solid materials and rolling balls.
Carbon fiber reinforced zirconium boride composite with high density is available, while silicon carbide-reinforced Zirconium boride composite can be brittle and subject to catastrophic damage.
The main supplier of Zirconium Diboride Powder
Tech Co., Ltd. () is a professional Boride powder Over 12 years’ experience in chemical product development and research. We accept credit cards, T/T and West Union payments. We will ship goods overseas via FedEx, DHL and by air or sea to our customers.
You can find high-quality powdered boron carbide here Please contact us Send an inquiry

Overview of Zirconium Diboride Pulver Zirconium diboride (ZrB2) This is a type of high covalent ceramic material with hexagonal crystal structures. It is an ultrahigh-temperature […]

Continue reading